Review: Function Definition - 9/12/16

1 Definition of a Function

Definition 1.0.1 A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

The "exactly one" part of the definition means that the function can only send each x to one f(x). This manifests itself graphically by the vertical line test.

Definition 1.0.2 The Vertical Line Test: A curve is the graph of a function if and only if no vertical line intersects the curve more than once.

2 Domain and Range

Definition 2.0.3 The domain of a function f is the set of values for which the function is defined.

Example 2.0.4 What is the domain of $f(x) = x^2$? It is all real numbers, denoted $(-\infty, \infty)$.

Example 2.0.5 What is the domain of $g(x) = \frac{1}{x}$? It is $(-\infty, 0) \cup (0, \infty)$.

Example 2.0.6 What is the domain of $f(x) = \sqrt{x}$? It is $[0, \infty)$.

When looking for the domain of a function you should find the values for which the function is not defined (aka where the function doesn't make sense). Things to check:

- 1. Bottom of fraction
- 2. Inside of square root
- 3. Arbitrary domain specification

Definition 2.0.7 The range of a function f is the set of all possible values of f(x).

Example 2.0.8 What is the range of $f(x) = x^2$? It is $[0, \infty)$. What is the range of $g(x) = x^2 + 2$? It is $[2, \infty)$.

Example 2.0.9 What is the range of $f(x) = \frac{1}{x}$? It is $(-\infty, 0), (0, \infty)$.

Example 2.0.10 What is the range of $f(x) = \sqrt{x}$? It is $[0, \infty)$.

Practice Problems

Find the domain of the following functions:

1. $f(x) = \frac{1}{x^2 + 13x + 32}$.

- 2. $g(x) = \sqrt{x^2 4}$.
- 3. $h(x) = x^3 2$.

Find the range of the following functions:

1. $f(x) = (x+2)^2$.

2.
$$g(x) = \frac{1}{x-7}$$
.

3. $h(x) = \sqrt{x} - 2$.

3 Operations on Functions

We can add, subtract, multiply, and divide functions.

Example 3.0.11 For the following examples, let $f(x) = x^2$, $g(x) = \sqrt{2x+3}$. $(f+g)(x) = x^2 + \sqrt{2x+3}$. $(f-g)(x) = x^2 - \sqrt{2x+3}$ $(fg)(x) = x^2(\sqrt{2x+3})$ $(\frac{f}{g})(x) = \frac{x^2}{\sqrt{2x+3}}$

There's an extra operation that we can do with functions that we can't do with numbers. This operation is called composition.

Definition 3.0.12 Given two functions f and g, the **composition** of f and g, $f \circ g$, is defined by $(f \circ g)(x) = f(g(x))$.

Example 3.0.13 Let $a(x) = \frac{1}{x}$ and $b(x) = x^3 + 7$. Then $(a \circ b)(x) = \frac{1}{x^3 + 7}$ and $(b \circ a)(x) = \left(\frac{1}{x}\right)^3 + 7$.

Practice Problems

Let $f(x) = \sqrt{x}$, $g(x) = x^2$. Write down the equations and find the domain for the following functions:

- 1. f(x)
- 2. g(x)
- 3. (f+g)(x)
- 4. (f g)(x)
- 5. (fg)(x)
- 6. $(\frac{f}{a})(x)$
- 7. $(f \circ g)(x)$
- 8. $(g \circ f)(x)$

4 Sequences

Definition 4.0.14 A sequence is an ordered list of numbers.

Example 4.0.15 There are three ways to write the sequence $\{1, 2, 3, 4, 5, ...\}$:

- 1. $\{1, 2, 3, 4, 5, \dots\}$
- 2. $\{n\}_{n=1}^{\infty}$
- 3. $a_n = n$

If we're talking about an arbitrary sequence, then we write $\{a_n\}_{n=1}^{\infty}$.

Example 4.0.16 Write out the first few terms of each sequence: $\{a_n\} = \{\frac{(-1)^n}{n^2}\}\ a_1 = \frac{-1}{1}, \ a_2 = \frac{1}{4}, \ a_3 = \frac{-1}{9}$

 $b_n = 2b_{n-1} + b_{n-2}$, with $b_1 = 2$ and $b_2 = 4$ $b_3 = 10, b_4 = 24, b_5 = 58$

Practice Problems

Write out the first few terms of the following sequences:

- 1. $\left\{\frac{n}{(n+1)^2}\right\}_{n=1}^{\infty}$
- 2. $\{\frac{1}{n^3}\}_{n=1}^{\infty}$
- 3. $a_n = 3a_{n-1}$ with $a_1 = 1$.

Find the formula for the following sequences:

1. $\left\{\frac{1}{3}, \frac{1}{6}, \frac{1}{9}, \frac{1}{12}, \dots\right\}$ 2. $\left\{\frac{1}{6}, \frac{2}{8}, \frac{3}{10}, \frac{4}{12}, \dots\right\}$