Review: Function Definition - 9/12/16

1 Definition of a Function

Definition 1.0.1 A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

The "exactly one" part of the definition means that the function can only send each x to one $f(x)$. This manifests itself graphically by the vertical line test.

Definition 1.0.2 The Vertical Line Test: A curve is the graph of a function if and only if no vertical line intersects the curve more than once.

2 Domain and Range

Definition 2.0.3 The domain of a function f is the set of values for which the function is defined.
Example 2.0.4 What is the domain of $f(x)=x^{2}$? It is all real numbers, denoted $(-\infty, \infty)$.
Example 2.0.5 What is the domain of $g(x)=\frac{1}{x}$? It is $(-\infty, 0) \cup(0, \infty)$.
Example 2.0.6 What is the domain of $f(x)=\sqrt{x}$? It is $[0, \infty)$.
When looking for the domain of a function you should find the values for which the function is not defined (aka where the function doesn't make sense). Things to check:

1. Bottom of fraction
2. Inside of square root
3. Arbitrary domain specification

Definition 2.0.7 The range of a function f is the set of all possible values of $f(x)$.
Example 2.0.8 What is the range of $f(x)=x^{2}$? It is $[0, \infty)$. What is the range of $g(x)=x^{2}+2$? It is $[2, \infty)$.

Example 2.0.9 What is the range of $f(x)=\frac{1}{x}$? It is $(-\infty, 0),(0, \infty)$.
Example 2.0.10 What is the range of $f(x)=\sqrt{x}$? It is $[0, \infty)$.

Practice Problems

Find the domain of the following functions:

1. $f(x)=\frac{1}{x^{2}+13 x+32}$.
2. $g(x)=\sqrt{x^{2}-4}$.
3. $h(x)=x^{3}-2$.

Find the range of the following functions:

1. $f(x)=(x+2)^{2}$.
2. $g(x)=\frac{1}{x-7}$.
3. $h(x)=\sqrt{x}-2$.

3 Operations on Functions

We can add, subtract, multiply, and divide functions.
Example 3.0.11 For the following examples, let $f(x)=x^{2}, g(x)=\sqrt{2 x+3}$.
$(f+g)(x)=x^{2}+\sqrt{2 x+3}$.
$(f-g)(x)=x^{2}-\sqrt{2 x+3}$
$(f g)(x)=x^{2}(\sqrt{2 x+3})$
$\left(\frac{f}{g}\right)(x)=\frac{x^{2}}{\sqrt{2 x+3}}$
There's an extra operation that we can do with functions that we can't do with numbers. This operation is called composition.

Definition 3.0.12 Given two functions f and g, the composition of f and g, $f \circ g$, is defined by $(f \circ g)(x)=f(g(x))$.

Example 3.0.13 Let $a(x)=\frac{1}{x}$ and $b(x)=x^{3}+7$. Then $(a \circ b)(x)=\frac{1}{x^{3}+7}$ and $(b \circ a)(x)=\left(\frac{1}{x}\right)^{3}+7$.

Practice Problems

Let $f(x)=\sqrt{x}, g(x)=x^{2}$. Write down the equations and find the domain for the following functions:

1. $f(x)$
2. $g(x)$
3. $(f+g)(x)$
4. $(f-g)(x)$
5. $(f g)(x)$
6. $\left(\frac{f}{g}\right)(x)$
7. $(f \circ g)(x)$
8. $(g \circ f)(x)$

4 Sequences

Definition 4.0.14 A sequence is an ordered list of numbers.
Example 4.0.15 There are three ways to write the sequence $\{1,2,3,4,5, \ldots\}$:

1. $\{1,2,3,4,5, \ldots\}$
2. $\{n\}_{n=1}^{\infty}$
3. $a_{n}=n$

If we're talking about an arbitrary sequence, then we write $\left\{a_{n}\right\}_{n=1}^{\infty}$.
Example 4.0.16 Write out the first few terms of each sequence:
$\left\{a_{n}\right\}=\left\{\frac{(-1)^{n}}{n^{2}}\right\}$
$a_{1}=\frac{-1}{1}, a_{2}=\frac{1}{4}, a_{3}=\frac{-1}{9}$
$b_{n}=2 b_{n-1}+b_{n-2}$, with $b_{1}=2$ and $b_{2}=4$
$b_{3}=10, b_{4}=24, b_{5}=58$

Practice Problems

Write out the first few terms of the following sequences:

1. $\left\{\frac{n}{(n+1)^{2}}\right\}_{n=1}^{\infty}$
2. $\left\{\frac{1}{n^{3}}\right\}_{n=1}^{\infty}$
3. $a_{n}=3 a_{n-1}$ with $a_{1}=1$.

Find the formula for the following sequences:

1. $\left\{\frac{1}{3}, \frac{1}{6}, \frac{1}{9}, \frac{1}{12}, \ldots\right\}$
2. $\left\{\frac{1}{6}, \frac{2}{8}, \frac{3}{10}, \frac{4}{12}, \ldots\right\}$
